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ABSTRACT
Background: Lung cancer (LC) is one of the fastest-growing malignancies in terms of morbidity and mortality, and
ocular metastasis (OM) is a rare site of metastasis in primary lung cancer. This study aimed to construct an
effective machine learning (ML)-based clinical prediction model.
Methods: We retrospectively collected clinical data from 2990 LC patients between January 2002 and December
2016 and divided them into the training and internal test sets in a 7:3 ratio. Patients were divided into the non-
ocular metastasis (NOM) group and the OM group based on the presence or absence of OM. Univariate logistic
regression was performed for both groups, and variables with P of < 0.05 were screened for inclusion in the ML
model. We used different ML algorithms to build six ML clinical prediction models, which were internally validated
by ten-fold cross-validation. The predictive performance of each model was assessed by its area under the curve
(AUC), accuracy, sensitivity (recall), and specificity.
Results: A total of eight variables affecting OM in LC patients were screened by the model. The extreme gradient
boost (XGB) ML model achieved optimal differential diagnostic power, and it had the best prediction performance
in the internal validation set (AUC: 0.998, accuracy: 0.997, sensitivity: 0.998, specificity: 0.997). The top eight most
important risk factors for OM in LC were obtained using SHAP: alpha-fetoprotein (AFP), total prostate-specific
antigen (TPSA), carcinoma antigen (CA)-125, cytokeratin fragment 19 (CYFRA 21-1), CA-153, histopathological-type,
CA-199, and carcinoembryonic antigen (CEA). Finally, a web-based calculator based on the XGB model was
developed to predict the risk of OM in LC patients.
Conclusion: The predictive model can help identify patients with LC who are vulnerable to OM to diagnose them
early and provide early personalized treatment to reduce the poor prognosis of patients developing OM and
further improve their quality of life.
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INTRODUCTION

According to the 2018 GLOBOCAN cancer incidence
and mortality estimates published by the International
Agency for Research on Cancer, lung cancer (LC) is the
most commonly diagnosed cancer in both males and
females (11.6% of all cases) and the leading cause of
cancer deaths (18.4% of all cancer deaths)[1]. In 2020,
breast cancer replaced lung cancer and became cancer with
the highest accurate diagnosis rate in the world.[2]
However, as of 2020, LC remains the most prevalent
cancer worldwide and one of the leading causes of cancer-
related deaths.[2] The main reported risk factor for LC
development is still smoking. Environmental and

occupational exposures, chronic lung disease, genetic
susceptibility, age, gender, and race are also associated
with LC development. According to the pathological type,
LC can be divided into small cell carcinoma and non-small
cell carcinoma (such as adenocarcinoma, large cell
carcinoma, and squamous cell carcinoma). Hematoxylin-
eosin staining (HE) and characteristic
immunohistochemistry of lung adenocarcinoma are shown
in Figure 1. These classifications are used to make
treatment decisions and evaluate prognosis.[3] The two
types of LC are different in sensitivity to chemotherapy
and radiotherapy. At present, adenocarcinoma has
surpassed squamous cell carcinoma to become the most
common pathological LC type, and early metastasis is
becoming increasingly common.[4]

Figure 1. HE and characteristic immunohistochemistry of lung adenocarcinoma.

LC metastasis is the process by which a primary
malignant tumor in the lung spreads far away from its
primary site through multiple pathways. The most common
sites of LC metastasis are the brain, bones, lymph nodes,
and liver.[5, 6] LC metastasis is a particularly complex
process that includes, but is not limited to, the involvement
of LC stem cells (LCSCs) and multiple mechanisms, such
as the LC microenvironment.[7, 8] Ocular metastasis (OM),
as a relatively rare distant LC metastasis, tends to occur
later than metastasis from other organs and tissues. Due to
its low incidence and mild or even asymptomatic early
clinical course, most people pay less attention to it

compared to brain and liver metastases.[9] Common
symptoms in patients with OM include blurred vision or
even loss of vision due to macular and peripapillary retinal
involvement or exudative retinal detachment. Additionally,
about 12% of patients diagnosed with OM from LC will
experience eye pain.[10] To date, the clinical prognosis for
OM in LC patients depends mainly on the pathological
tissue type, treatment modality, and the patient's preserved
ocular function. Therefore, early recognition of OM for
appropriate intervention is important to facilitate early
disease control and improve the patient’s standard of living.
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Tumor markers are certain substances produced and
released by tumor cells with abnormal biochemical
properties and their metabolism, often in the form of
antigens, enzymes, hormones, and other metabolites within
tumor cells or in host body fluids. These markers can be
broadly classified into two categories: tumor cell secretion
and tumor cell expression, reflecting the presence and
growth of tumors. Tumor markers are mainly found in
serum and cavity fluids and can be detected by various
methods, such as immunology and biochemistry. Therefore,
they are less difficult to collect, less expensive, and less
invasive than magnetic resonance imaging (MRI) and
computed tomography (CT) scans. Moreover, tumor
markers can help identify or diagnose tumors just based on
their biochemical or immunological properties. Recently,
new tumor markers have been discovered, and their
evaluation has been improved, enhancing their sensitivity
and accuracy. Furthermore, tumor marker testing has
become routine. However, there is currently no ideal
clinical marker that can be used as an indicator of OM and
LC prognosis.

Nelson et al. [11] reported a 6.7% incidence of OM in
patients with LC at autopsy in 1983. Kreusel et al. found
OM in approximately 7% of patients with advanced LC in
2002.[12] However, in 2008, Su et al. identified only 16
patients with symptomatic OM out of 8484 patients
diagnosed with LC from 1992 to 2004.[13] In that survey,
the number of OM was not significant. Alexander et al. [9]
has noted that this was because the study only identified
patients with symptomatic intraocular metastases and that
most patients with OM were asymptomatic in the early
stages. In the clinical setting, many asymptomatic patients
are not easily detected. Notably, complete blindness in a
specific visual field, as reported by Alexander in a 70-year-
old patient with metastatic non-small cell lung cancer
(NSCLC) admitted to the hospital due to progressive loss
of vision after two weeks, is rarely reported. [9] This may
be due to the rapid rate of progression of the patient's
intraocular lesions or delayed access to the clinic.

Machine learning (ML) is a mathematical method for
inductive analysis of big data and a part of artificial
intelligence, which has been widely used to aid medical
diagnosis and image detection.[14] Chip et al. [15]has
concluded that ML classification techniques can predict the
survival prognosis of LC patients, with the gradient
boosting machine (GBM) model showing strong
performance. Michael et al. have developed an automated

deep-learning method based on chest radiograph images to
identify smokers at high risk of LC.[16] Sharmila’s
research has demonstrated the use of ML and image
processing techniques to achieve accurate LC classification
and prediction.[17] However, due to the relative rarity of
OM patients, few researchers have developed clinical
prediction models for OM in LC patients. In this study, we
wanted to identify potential biomarkers of metastatic LC
by various indicators of LC patients, including general
demographic data and serological indicators, and construct
several clinical prediction models based on the ML
approach to quantify the risk of OM based on the above-
mentioned biomarkers by comparing the performance of
different ML models and selecting the optimal ML model
to explain the different effects of each parameter variable
on LC patients. The performance of different ML models
was compared, and the optimal ML model was selected to
explain the different effects of each parameter variable on
the occurrence of OM in LC patients. Additionally, a
webpage calculator was developed to achieve personalized
prediction performance for LC patients, thus, further
improving the prognosis of LC patients.

MATERIALS AND METHODS

Study Population Subjects

Data for both training and internal test sets were
obtained from the the Chinese University of Hong Kong.
We retrospectively collected clinical data from 3019 LC
patients from January 2002 to December 2016 and
screened each patient for missing data. Finally, we
included 2990 LC patients, including 2944 NOMs and 46
OMs, for whom information on all variables was complete.
In our study, the incidence of OM was only 1.5% due to
the low probability of OM in LC patients, even after 14
years of data collection on LC patients. We used a
synthetic minority oversampling (synthetic minority
oversampling technique SMOTE) approach to reduce the
impact of unbalanced data.[18] We randomly partitioned
the dataset into a training set and an internal test set in a
ratio of 7:3. The clinical information exclusion criteria
were 1) primary malignant or benign tumor of the eye; 2)
contraindications for MRI examination; 3) other cases with
unknown pathological tissue types, different tumor marker
levels. The specific screening process is shown in Figure 2.
This study has been approved by the Medical Ethics
Committee of the The Chinese University of Hong Kong.
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Figure 2. The flow chart of data cleaning.

Data Selection

We collected various data from all clinical cases,
including gender, age, and pathological tissue type, and
analyzed serum tumor markers, including alkaline
phosphatase (ALP), serum calcium (Ca2+), hemoglobin
(Hb), methemoglobin (AFP), neuron-specific enolase
(NSE), carcinoembryonic antigen (CEA), total prostate-
specific antigen (TPSA), carcinoembryonic antigen (CA)-
125, cytokeratin fragment 19 (CYFRA 21-1), CA-153, CA-
199. Univariate logistic regression analysis showed that the
variables with P of < 0.05 were included in the
characteristic variables of the ML model.

Statistical Analysis

We used Python (version 3.8) and R software (version
4.0.2) for the statistical analysis of the data. SMOTE
technique was applied to the original dataset using Python
to reduce the impact of unbalanced data on ML in dividing
the dataset and subsequent validation.[17] A stratified
random sampling method was used to randomly divide the
SMOTE-posted dataset into the training set and the internal
test set in a 7:3 ratio. We used the training set to build the
model and used the internal test set to validate and evaluate
the model. In this case, we de-classified the data by using

the chi-square test, while the Mann–Whitney test was used
for continuous, non-normally distributed data. We
compared variables between patients with OM and those
with NOM by using univariate logistic analysis. The eight
variables with P of < 0.05 in the univariate logistic analysis
were included in the construction of the ML model. Then,
we performed multifactorial logistic regression (LR) to
determine risk factors for OM development in LC patients.
We created receiver operating characteristic (ROC) curves
and calculated the area under the curve (AUC) for subjects.
The Python programming language (version 3.8) was also
used to develop and evaluate ML models and design the
web calculator.

Data Pre-Processing

A label-coding approach was used to address
categorical variables, such as gender, treatment, and
histopathological type. Univariate logistic analysis was
used to select meaningful combinations of characteristics
to predict the risk of developing OM in LC patients. We
used the SHAP package to establish a ranking of the
importance of risk factor variables for patients with
intraocular metastatic LC.[19] SHAP is a method for
interpreting the results of predictive models based on
cooperative game theory. The method quantifies the SHAP
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value for each characteristic variable, representing the
contribution of different characteristics to the predicted risk
of intraocular metastases in LC patients. The model
produces a prediction for each sample, and the sum of
means of the absolute Shapley values for each feature
across all samples is the overall importance score for that
feature.[20] Additionally, the SHAP method demonstrates
the positive or negative effect of each feature value on the
predicted outcome, similar to the coefficient values in
logistic regression. When the SHAP value is ＞ 0, it
indicates that the corresponding feature has a higher
probability of leading to a higher risk of OM, while when
the SHAP value is ＜ 0, it indicates that the corresponding
feature leads to a lower risk of OM.

Model building

All the algorithmic models were based on scikit-learn
(Version 0.24.2). In this study, we used six different ML
models: adaptive boosting (AB) model, logistic regression
(LR) model, bootstrapped aggregating (BAG) model,
multilayer perceptron (MLP) model, GBM model, and
extreme gradient boost (XGB) model. The ML algorithm
was trained and tuned to predict OM in LC patients, and
the random search method in scikit-learn was used to tune

the hyperparameters of the different models. Then, through
the internal ten-fold cross-validation of whole data, the
predictive performance of the ML models was evaluated.
Finally, we selected the best-performing model by
assessing AUC, accuracy, sensitivity (recall), and
specificity scores to build a web calculator.

RESULTS

Demographic baseline data

The clinical data of 2990 patients were included (2202
males and 788 females), of which 46 had OM and 2944
cases had NOM. There were no statistically significant
differences between the OM and NOM groups in terms of
age, gender, and treatment modality (P > 0.05). In terms of
histopathological subtypes, adenocarcinoma was the most
common type in the two groups, and the difference in
histological type distribution between the OM and NOM
groups was statistically significant (P < 0.001). The
differences in blood calcium, Hb, ALP, and NSE levels
between the OM and NOM groups were not statistically
significant (P > 0.05), while the differences in AFP, TPSA,
CA-125, CYFRA 21-1, CA-153, CA-199, and CEA-related
indicators were significantly different (P < 0.05). Other
related indicators can be found in Table 1.

Differences in risk factors for ocular metastases
By establishing a univariate logistic regression model,

we screened variables with P of < 0.05 in the univariate
logistic regression analysis and multivariate logistic
regression analysis to identify risk factors for the
development of OM in LC patients. In the univariate
logistic regression, AFP, CEA, TPSA, CA-153, CA-199,
CA-125, CYFRA21_1, and pathological tissue type-related
indicators were risk factors for OM (Table 2), and the
above-mentioned indicators were included as characteristic

variables in the six ML models. Multivariate logistic
regression results showed that pathological tissue type,
AFP, CEA, TPSA, CYFRA 21-1, and CA-153-related
indicators, as risk factors for OM, were independent risk
factors for the development of OM in LC patients (P <
0.05). According to the results of univariate and
multivariate logistic regression, the forest maps of
univariate results (figure 3A) and multivariate results
(figure 3B) were drawn, respectively.
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Notes: * p < 0.05 represented statistically significant.
Abbreviation: AFP, alphafetoprotein; TPSA, total prostate-specific antigen; CA-125, carcinoma antigen-125;

CYFRA 21-1, cytokeratin fragment 19; CA-153, carcinoma antigen-153; CA-199, carcinoma antigen-199;
CEA ,Carcinoembryonic antigen; Hb, hemoglobin; NSE, neuronal enolase.

Table 1. Comparison of baseline data between the two groups

Variables Total (n = 2990) NOM (n = 2944) OM (n = 46) P value

Gender, n (%) 0.834

Female 788 (26) 777 (26) 11 (24)

Male 2202 (74) 2167 (74) 35 (76)

Histopathological_type, n (%) < 0.001*

Squamous carcinoma 1139 (38) 1132 (38) 7 (15)

Adenocarcinoma 1224 (41) 1191 (40) 33 (72)

Large cell carcinoma 29 (1) 29 (1) 0 (0)

Small cell lung cancer 359 (12) 355 (12) 4 (9)

Other non-small cel l lung cancer 228 (8) 227 (8) 1 (2)

Unknown 11 (0) 10 (0) 1 (2)

Treatment, n (%) 0.003*

untreated 164 (5) 164 (6) 0 (0)

surgical treatment 365 (12) 365 (12) 0 (0)

chemotherapy 1305 (44) 1279 (43) 26 (57)

radiotherapy 46 (2) 44 (1) 2 (4)

systemic treatment 1110 (37) 1092 (37) 18 (39)

Age, Median (Q1,Q3) 60 (53, 68) 60 (53, 68) 59 (50, 65.75) 0.188

ALP, Median (Q1,Q3) 76 (61, 100) 76 (60, 100) 94 (66.25, 140.5) 0.005

Ca, Median (Q1,Q3) 2.25 (2.13, 2.38) 2.25 (2.13, 2.38) 2.3 (2.14, 2.43) 0.226

AFP, Median (Q1,Q3) 2.03 (0.3, 2.35) 2.01 (0.26, 2.34) 2.48 (1.97, 4.14) < 0.001*

CEA, Median (Q1,Q3) 5.26 (2.35, 23) 5.15 (2.34, 23) 53.94 (11.7, 315.02) < 0.001*

CA_125, Median (Q1,Q3) 22 (9, 52.18) 21.4 (9, 50.86)
118.25 (60.49,

429.15)
< 0.001*

CA_199, Median (Q1,Q3) 12 (7.74, 21.3) 12 (7.71, 21) 23.66 (10.83, 55.71) < 0.001*

CA_153, Median (Q1,Q3) 11.12 (8.88, 21) 11 (8.66, 21) 36 (15.8, 66.26) < 0.001*

CYFRA21_1, Median (Q1,Q3) 3.45 (2.14, 6.18) 3.45 (2.13, 5.87) 33.75 (10.76, 50.75) < 0.001*

TPSA, Median (Q1,Q3) 1.21 (0.76, 1.67) 1.2 (0.76, 1.65) 3.52 (2.43, 5.6) < 0.001*

NSE, Median (Q1,Q3) 16.77 (12, 23.6) 16.76 (12, 23.5) 21.9 (17, 34) < 0.001*

Hb, Median (Q1,Q3) 120 (107, 132) 120 (107, 132) 113.5 (101, 127.5) 0.044
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Notes: * p < 0.05 represented statistically significant.
Abbreviation: AFP, alphafetoprotein; TPSA, total prostate-specific antigen; CA-125, carcinoma antigen-125;
CYFRA 21-1, cytokeratin fragment 19; CA-153, carcinoma antigen-153; CA-199, carcinoma antigen-199;
CEA ,Carcinoembryonic antigen; Hb, hemoglobin; NSE, neuronal enolase.

Table 2. Univariate and multivariate Logistic regression

Characteristics category
Univariate analysis Multivarite analysis

OR (95% CI) P value OR (95% CI) P value

Gender

Female Ref Ref Ref Ref

Male 1.141 ( 0.577-2.257 ) 0.705 \ \

Histopathological

type

Squamous carcinoma Ref Ref Ref Ref

adenocarcinoma 4.481 ( 1.974-10.17 ) <0.001*
2.586

( 1.002-6.669 )
0.049*

large cell carcinoma 0 ( 0-Inf ) 0.986 0 ( 0-Inf ) 0.987

small cell lung

cancer
1.822 ( 0.53-6.261 ) 0.341

2.199

( 0.595-8.121 )
0.237

other non-small cell

lung cancer
0.712 ( 0.087-5.819 ) 0.752

0.269

( 0.018-3.943 )
0.338

AFP \ 1.441 ( 1.28-1.621 ) <0.001*
1.411

( 1.224-1.626 )
<0.001 *

CEA \ 1.001 ( 1.001-1.002 ) <0.001*
1.001

( 1.001-1.002 )
<0.001*

CA_125 \ 1.002 ( 1.002-1.003 ) <0.001* 1.001 ( 1-1.002 ) 0.103

CA_199 \ 1.003 ( 1.002-1.004 ) <0.001* 1.001 ( 1-1.003 ) 0.105

CA_153 \ 1.014 ( 1.01-1.018 ) <0.001*
1.011

( 1.006-1.015 )
<0.001*

CYFRA21_1 \ 1.008 ( 1.005-1.012 ) <0.001*
1.006

( 1.001-1.011 )
0.029*

TPSA \ 1.699 ( 1.522-1.898 ) <0.001*
1.726

( 1.52-1.96*1 )
<0.001*

Gender \ 1.141 ( 0.577-2.257 ) 0.705 NA NA

Age \ 0.984 ( 0.958-1.01 ) 0.235 NA NA

ALP \ 1.003 ( 1-1.005 ) 0.064 NA NA

Ca \ 2.137 ( 0.689-6.63 ) 0.188 NA NA

Hb \ 0.986 ( 0.971-1 ) 0.057 NA NA

NSE \ 1.002 ( 0.996-1.008 ) 0.507 NA NA
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Figure 3. Univariate and multivariate logistic regression results forest map.

(A) The univariate logistic regression results forest map. (B) The multivariate logistic regression results forest map.

Model performance

We assessed the risk probability of developing OM in
LC patients by six different ML models built for MLP, AB,
BAG, LR, GBM, and XGB and the associated accuracy
comparison. The prediction performance of all models was
evaluated with 10-fold cross-validation of the whole data
set, as detailed in Figure 4A.

The XGB model was shown to perform best in the
validation set results with an AUC of 0.998, an accuracy of
0.997, a sensitivity of 0.998, and a specificity of 0.997
(Table 3). The results of the 10-fold cross-validation
showed that XGB had an AUC of 0.999 and a standard
error of 0.001, outperforming other ML models and
traditional LR. The model validation results based on the
validation set are shown in Figure 4B, where the XGB

model continued to perform best in predicting the
occurrence of OM in LC (AUC = 0.998).

We constructed an ROC curve based on the optimal
ML model XGB to assess the stability of its results, as
shown in Figure 4C. Five-fold cross-validation was
performed to assess the stability and accuracy of the XGB,
and our results showed that the XGB had good stability.
Moreover, the confusion matrix for each ML model result
was plotted against the SMOTE balance data, as shown in
Figure 5. The number of accurately predicted OM samples
in the XGB ML algorithm was 2944 cases, and the number
of accurately predicted NOM samples was 2938 cases. For
the above-mentioned six ML models, we plotted the
maximum values of the five metrics evaluated by the radar
plot, where XGB had the best value in each metric
evaluation compared to other models for sensitivity, F1
score, AUC, accuracy, and specificity (Figure 6).

Abbreviation: AUC, area under the curve; AB, adaptive boosting; LR, logistic regression; BAG, bootstrapped aggregating;

MLP, multilayer perceptron; GBM, gradient boosting machine; XGB, extreme gradient boost.

Table 3. Comparison of six machine learning metrics

Model F1 AUC Accuracy Sensitivity Specificity

AB 0.943 0.989 0.943 0.942 0.944

LR 0.908 0.954 0.908 0.899 0.918

BAG 0.952 0.99 0.952 0.967 0.937

MLP 0.927 0.962 0.927 0.931 0.922

GBM 0.988 0.996 0.988 0.997 0.978

XGB 0.999 0.998 0.997 0.998 0.997
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Figure 4. Validation of machine learning algorithms.

(A) AUC values of 10-fold cross-validation. (B) validation of machine learning algorithms. (C) ROC curve in the
XGB model. (D) AUC is used as an indicator of performance, and the XGB model achieved the best predictive performance.

Figure 5. Confusion matrix of six machine learning models.

(A-F) The best correct classification (accuracy) of OM for the machine model was XGB.
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Figure 6. Radar plot of six machine learning methods.

Among the six machine learning models, XGB showed the best performance in F1 score, AUC, accuracy, sensitivity,
and specificity.

Importance of characteristic variables

We ranked the importance of risk factors for whole
subjects by SHAP. Additionally, we took one low-risk
subject and one high-risk subject and analyzed two typical
cases to demonstrate the interpretability of the models.

We used the SHAP library to build a risk factor model
for OM in LC patients based on the XGB (Figure 7A).
According to Figure 7, the global interpretation of the risk
factor model obtained by SHAP was as follows. Among
the SHAP values on the X-axis in Figure 7, all values on
the left side are the proportion of predicted values that are
negatively correlated, and the values on the right side are
the proportion of predicted values that are positively
correlated. The Y-axis represents the descending order of
importance of the effect these characteristics have on OM
in LC patients. In the model for XGB, the variables are, in

order of importance, AFP, TPSA, CA-125, CYFRA 21-1,
CA-153, histopathological type, CA-199, and CEA, with
their details demonstrated in Figure 7B. Furthermore,
according to the SHAP library, we sampled two subjects
each, which included members of the OM and NOM
groups. The base value calculated from our model was
−13.53, where the output value of the low-risk group was
−22.9, and that of the high-risk group was −9.06 (Figure
7C, D). For the low-risk group, AFP, TPSA, CA-125, and
CEA were low-risk factors for OM, while other variables,
such as CYFRA 21-1 and CA-199, were high-risk factors.
For the high-risk group, AFP, histopathological type, CA-
125, CA-153, and CYFRA21-1 were high-risk factors,
while TPSA and CA-199 were low-risk factors. In both
subject samples, CYFRA21-1 was a high-risk factor, and
TPSA was a low-risk factor for OM occurrence. Other
details of specific values are shown in Figure 7.
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Figure 7. SHAP summary plot and SHAP model explanation of two typical predictions.

(A) The features are ranked according to the sum of the SHAP values of all patients, and the SHAP values are
used to show the distribution of the influence of each feature on the output of the XGB model. The horizontal axis
represents the SHAP value corresponding to the feature, with a positive SHAP value helping to predict OM. (B)
Descending histogram of mean importance values calculated according to characteristic variables. (C) the low-risk
SHAP interpretation model of eye metastasis in lung cancer patients. (D) the high-risk SHAP interpretation model.

Web page calculator

The XGB model had optimal prediction performance;
hence, the above web predictor can be used to predict the
risk probability of OM. Users only need to enter the
specific number of characteristic variables in the sidebar of

the web page and click predict to obtain the risk probability
of OM. The risk value can be calculated in real time
according to the input variables of the user, and the degree
of influence of each variable on the risk of eye metastasis
can be sorted (https://shimunana-lungcancer-eye-lung-
cancer-eye-1iank4.streamlit.app/ (Figure 8).



Advance in Medical Research24

Figure 8. Web calculator for predicting ocular metastasis of lung cancer based on

extreme gradient boosting model.

The URL is https://shimunana-lungcancer-eye-lung-cancer-eye-1iank4.streamlit.app/.

DISCUSSION
In this study, six ML algorithms were used for the

first time to predict the OM in LC patients, and an XGB
model, which can be used to clinically predict OM
occurrence in LC, was obtained and interpreted. Compared
with the conventional LR model, the XGB with the base
learner as a tree model had higher prediction accuracy, and
the quantitative analysis of the feature contribution
effectively assisted the process of feature selection.
Subsequently, we designed a network risk calculator based
on the XGB model to estimate the probabilistic risk of OM
in LC patients to help clinicians develop targeted
diagnostic and treatment plans, making precision treatment
possible.

LC is the malignant tumor that has the highest
incidence and mortality rate in the Chinese region and
often metastasizes distantly. Thus, many LC patients in
China have already developed local or distant metastases
by the time they are diagnosed. Although OM is relatively
rare, it predicts a poor prognosis for LC patients. Therefore,
early diagnosis of OM is essential. Tumor marker
evaluation is currently of great practical value in aiding the
diagnosis of tumors, analyzing the course of the disease,
guiding treatment, monitoring compound, and judging
prognosis, as well as evaluating the efficacy of treatment

and following up and observing high-risk groups. When
tumor markers reach a certain level, the possibility of
tumor metastasis can be predicted, which compensates for
the limitations of CT, positron emission tomography
(PET)/CT, and MRI. In our analysis of clinical data from
2990 LC patients, binary logistic regression analysis
showed that AFP, TPSA, CA-125, CYFRA 21-1, CA-153,
pathological tissue type, CA-199, and CEA might be
independent risk factors for OM in patients with
multicellular LC (P < 0.001). For the possibility of OM in
LC, the serum levels of TPSA, AFP, CYFRA 21-1, CA-
125, and CA-153 showed greater importance.

AFP is a glycoprotein derived from embryonic
endodermal tissue cells and is present in higher levels in
fetal serum than in adults. Cellular immunity is the main
immune mechanism against cancer, and natural killer cells,
dendritic cells, and T lymphocytes are involved in immune
surveillance.[21] AFP has been shown to influence three
important immune cells to exert anti-tumor effects.[22, 23]
AFP is often used as a diagnostic marker for hepatocellular
carcinoma, and its level can become abnormal 6–12
months earlier compared to signs of cancer on imaging,
providing an important basis for early diagnosis of
hepatocellular carcinoma. AFP, which is modified in vitro
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to enhance immunogenicity and immune response, has
become a target for immunotherapy of hepatocellular
carcinoma.[24] In 2021, Jing Tang et al. found that AFP
was an independent risk factor for LC metastasis and
showed the highest sensitivity relative to other tumor
markers.[25]

TPSA is considered an effective means of detecting
and predicting prostate cancer. In 2021, Čamdžić et al.
analyzed prostate puncture specimens from 115 patients
with normal pre-treatment TPSA levels and showed that
TPSA values were positively associated with the
prevalence of prostate cancer found in puncture biopsy
specimens and that elevated TPSA values increased the
likelihood of prostate cancer.[26] Ge et al. have identified
serum concentrations of TPSA as an independent risk
factor for OM in elderly LC patients and that the
combination of CA-125, CA-153, and TPSA was an
accurate predictor of OM in elderly LC patients.[27]

CA-125, also known as mucin 16, is a membrane
glycoprotein belonging to the extensive mucin family and
is encoded by the gene with the same name, MUC16. CA-
125 has been used as a tumor marker for ovarian cancer
following its discovery in certain patients with specific
cancer or other benign diseases.[28] In 2020, Wang et al.
found that the combination of NSE and CA-125 could aid
in the prediction of liver metastases in LC, providing
improved diagnostic accuracy.[29] In 2021, Manoj K Bind
et al. demonstrated that CA-125 could be a good adjunct to
diagnose cases of gallbladder cancer as well as to imaging
studies.[30] However, due to its limited specificity and
sensitivity, CA-125 alone is still not an ideal biomarker. In
recent years, clinical practitioners have used CA-125 in
combination with HE4, another marker for ovarian cancer
that has recently been introduced into clinical use, to
improve clinical performance. In this way, better
sensitivity and specificity can be achieved in identifying
recurrences of epithelial ovarian cancer.[28] Additionally,
better sensitivity and specificity in identifying the
recurrence of epithelial ovarian cancer are possible.

CA-153 is secreted by epithelial cells with secretory
function, such as breast, lung, and intestinal cells, and can
also be detected in normal human excreta. It has been first
found in the membrane of breast cancer cells, consisting of
three structures: the membrane region, the intracellular
region, and the extracellular region rich in glycosyl
groups.[31] CA-153 can be separated from the cancer cell
membrane and released into the bloodstream, and its

sensitivity in advanced breast cancer can reach 80%.
Furthermore, CA-153 has a certain positive rate in other
malignant tumors, such as LC, colon cancer, pancreatic
cancer In contrast, the antigenic determinant cluster of its
extracellular region can be determined by specific binding
to monoclonal antibodies. Additionally, the CA-153 level
is abnormal in lung, endometrial, and gastrointestinal
cancers. Biao et al. suggested that smoking can be
associated with LC and eye lesions by altering CA-153 as a
risk factor. When serum levels of CA-153 are more than
22.33 U/ml, CT or MRI should be performed to detect
OM.[32]

CYFRA21-1 is a soluble fragment of cytokeratin 19
produced by cancer cells during the differentiation process
and is mainly found in the cytoplasm of compound tumor
epithelium. It has greater significance for LC diagnosis.[33]
When cells die, CYFRA 21-1 is released into the
bloodstream as a cleaved fragment, resulting in elevated
CYFRA 21-1 serum levels. According to previous studies,
CYFRA 21-1 can be used as a valid indicator for the
diagnosis of bladder cancer.[34] It has also been associated
with gastrointestinal and gynecological tumors such as
epithelial ovarian cancer.[35] Hiromichi et al. reported that
high levels of CYFRA 21-1 were associated with advanced
stages of LC tumors.[36] CYFRA21-1 was abundant in LC
tissues, especially in lung squamous carcinoma, where it
was highly expressed. Thomas et al. found that CYFRA
21-1 could be used in the diagnosis, prognosis, and
monitoring of non-small cell LC (NSCLC).[37] Jing Tang
et al. concluded from their analysis that CYRFA21-1 is an
independent risk factor for LC metastasis and that
CYRFA21-1 has the highest area under the ROC curve
values and better sensitivity and specificity values,
suggesting that CYFRA21-1 has better diagnostic value
compared to other tumor markers.[25] In 2019, Qi Lin et al.
showed that the combination of CYFRA21-1 and CA-153
had high accuracy, sensitivity, and specificity in predicting
OM.[38] Recent studies have shown that age and smoking
status can influence serum cytokeratin 19 fragment levels
in cancer-free individuals and that high levels of serum
CYFRA 21-1 are associated with older age and
smoking.[39]

ML is a mathematical model that applies artificial
intelligence in the context of big data to obtain the
relationship between variables from a large number of data
samples. ML has been closely integrated with medicine in
recent years and has gradually given rise to a medical-
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industrial crossover direction, which is one of the
important branches of data mining. Up to now, few ML
models have been applied in the direction of OM in LC. In
our study, we compared six different ML models to predict
the risk probability of OM in LC patients, comparing the
F1 score, sensitivity, specificity, AUC, accuracy, and other
indicators. Finally, the XGB model could achieve optimal
performance. The XGB model is an improvement of the
traditional ML algorithm gradient boosting decision tree
(GBDT).[40] The basic idea is that in each new cycle of
computation, the residuals from the previous cycle are used
as new data for learning, and a weak classifier is generated
in the negative gradient direction to minimize the residuals
of the current cycle. These weak classifiers are then
accumulated to generate a strong learner to fit the global
truth values. Compared to GBDT, XGB introduces a
regular term in the objective function to prevent overfitting
of the model during training and improve the robustness of
the model.

Although ML models are more powerful and
relatively more accurate than traditional statistical models,
the interpretation of the models is correspondingly more
complex, as are black boxes, limiting their further clinical
application. In our study, we interpreted the optimal ML
model XGB utilizing SHAP, a stand-alone ML model
interpretation technique that can interpret both global and
individual sample black box models and help understand
the relationship between predictors and outcomes in MLP
models. Therefore, our study, based on the selection of the

optimal ML model, aimed to enhance the global
interpretation of XGB applied to the prediction of the risk
of developing ocular metastases in LC patients, which
would help improve clinicians' confidence in the clinical
application of our ML model, assist clinicians in providing
personalized treatment plans during the consultation and
treatment of patients, and provide technical support for
clinical decision-making.

What remains to be improved is that there were still
some limitations in our current study. First, the sample size
of the OM group was relatively small, and all participants
were from the same region and hospital; thus, the results
were not sufficiently convincing. This was a single-center
retrospective study, and the performance of the ML
algorithm might vary according to the characteristics of
patients in different regions and the data sets of different
institutions. Therefore, in our next study, we will try to
obtain a large multi-center sample dataset to validate the
robustness and reproducibility of our model. Second, with
the relatively small number of variables incorporated for
learning from the characteristic variables in our ML
algorithm, we will incorporate as many clinical indicators
as possible in our subsequent studies and perform
prospective validation based on this model with larger
sample sizes to continue exploring the key risk factors for
the development of OM in LC patients and further modify
various parameters of the model to improve the accuracy of
the XGB prediction model.

CONCLUSION
The current study included data on the characteristics

of 2990 LC patients and built a prediction model for the
risk of developing OM in LC patients according to the
XGB model, demonstrating that the XGB model performed
best among the six ML models. The prediction model can
help identify LC patients at high risk of developing OM,
provide early and personalized diagnosis and treatment
plans, and assist clinicians with technical support when
making clinical decisions for patients, thereby reducing the

serious consequences of OM in LC, further improving
patients' prognosis and quality of life, coordinating the
rational use of healthcare resources, and reducing the
burden on society.
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