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ABSTRACT

Programmed cell death 1 (PD-1) and its ligand PD-L1 (programmed death 1 ligand 1) are important immune

checkpoints, and their interaction negatively regulates effector T-cell activation and proliferation, as well as being an

important pathway for tumor cells to evade immune surveillance. Blocking the binding of PD-1 to PD-L1 can relieve

the inhibition of T cells by tumor cells or antigen-presenting cells, and restore their ability to recognize and kill

tumor cells. However, PD-1/PD-L1 is complexly regulated and varies among tumors, occurring mainly at the genetic,

transcriptional and post-transcriptional levels. In the last decade, immune checkpoints blocker has become an

important part of the treatment for many malignant tumors, resulting in longer tumor remission. While achieving

better efficacy, the blocking effect in solid malignancies is still deficient, which may be related to the complex tumor

microenvironment. As important parts in the tumor microenvironment, Tregs and Th17 cells have been shown to be

involved in tumor development. Currently, the complex relationship between the PD-1/PD-L1 pathway, Tregs and

Th17 cells has not been fully elucidated. In this paper, we review the interaction between the PD-1/PD-L1 pathway,

Tregs and Th17 cells, with the aim of providing new ideas for future tumor therapy.
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INTRODUCTION

The rapid development of immunotherapy in recent years

has brought significant development opportunities for

tumor therapy. There are a wide variety of tumor

immunological treatments, including vaccines, cytokines,

antibody therapy, overt cellular immunotherapy, tumor

lysis immunotherapy, immunomodulators, and immune

checkpoint blockers, etc [1]. Among them, immune

checkpoint inhibitors (ICIs) can enhance the anti-tumor

immune response by regulating the activity of T cells,

which has become a hot spot of research and one of the

most promising strategies at present [2]. PD-1 and PD-L1

are important negative immunomodulatory factors [3].

PD-L1, which overexpressing on the surface of almost all

tumor cells, can bind to PD-1 receptors on the surface of T

cells and impair T cells function through intracellular

signaling, causing immune escape and resistance to

conventional resistance to radiotherapy [4]. The advent of

ICIs with monoclonal antibodies (mAbs), particularly

PD-1/PD-L1 blockers, has dramatically altered the

therapeutic outlook for a wide range of advanced

malignancies. Unlike chemotherapy and targeted therapies,

ICIs set out to reprogram the tumor immune response and

offer advantages in terms of long-term benefits for tumor

patients after treatment. Although their side effects are

considered manageable and well tolerated compared to

radiotherapy or other targeted therapeutic agents, ICIs are

still deficient in terms of clinical efficacy in blocking solid

malignant tumors, with only 20% to 30% effective rates for

monotherapy. Although immune checkpoint modulation

has been extensively studied in the past decades, however,

regulatory mechanisms controlling PD-1/PD-L1 expression

remain incompletely understood. In addition to genetic

mutations among different tumors, low PD-1/PD-L1

blocking response and drug resistance may also be related

to the complexity of the tumor microenvironment (TME) [5].

Studies targeting immunotherapy resistance have been

progressively carried out [6]. The interactions between the

co-stimulatory molecules, PD-1 and PD-L1, are regulated

in a wide range of immune cells. As key

immunosuppressive regulators within TME, regulatory T

cells (Tregs) critically influence tumor development and

progression, with their abundance and functional activity

modulating PD-1/PD-L1 inhibitor efficacy. The Treg/Th17

axis emerges as a pivotal regulator in both oncogenesis and

autoimmune pathogenesis, wherein Th17 cells manifest

context-dependent duality within tumor microenvironments

(TME). Emerging evidence suggests intricate crosstalk

between PD-1/PD-L1 signaling and this cellular axis,

prompting systematic investigation. This review

synthesizes current understanding of their

immunomodulatory networks and delineates tripartite

interactions shaping tumor immunity.

PD-1/PD-L1 pathway

PD-1, also known as CD279, is a 55 kDa-sized

transmembrane protein containing 288 amino acids and is

the transmembrane molecule of the immunoglobulin CD28

family. PD-1 was first isolated by the Ishida group in 1992

from mouse T-cell hybridomas experiencing programmed

cell death [7]. Murine PD-1 (mPD-1) transcriptional

activation correlates with apoptosis induction in T-cell

hybridomas, while PD-1 engagement triggers both

apoptotic pathways and cell cycle arrest mechanisms. PD-1

is involved in both adaptive and intrinsic immunity and is

expressed in activated T cells, natural killer (NK) cells, B

lymphocytes, macrophages, dendritic cells (DCs), and

monocytes [8]. PD-1 recognizes two ligands, PD-L1

(CD274 or B7-H1) and PD-L2 (CD273 or B7-DC), which

belong to the B7-CD28 protein family. PD-L1, a 33-kDa

type I transmembrane glycoprotein (290 amino acids),

features extracellular IgV/IgC domains critical for immune

checkpoint functionality. PD-L1 exhibits constitutive

expression across multiple immune lineages including T

lymphocytes, B cells, regulatory T cells (Tregs), and

antigen-presenting cells (APCs), while also demonstrating

broad tissue distribution in non-hematopoietic

compartments such as vascular endothelia, mesenchymal

stromal populations, fibroblasts, and pancreatic islet cells.

Notably, its physiological presence extends to
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immune-privileged anatomical sites (e.g., ocular tissues,

placental barrier, and testicular parenchyma), suggesting

evolutionary conservation of immune checkpoint

regulation in sanctuary microenvironments [9]. The

expression of PD-L2 is mainly restricted by

antigen-presenting cells (APCs). Tumor cells also express

high levels of PD-L1, and the PD-L1/PD-1 signaling

pathway has been suggested to contribute to tumor immune

escape [10]. The intracellular domain of PD-1 contains two

distinct tyrosine-based signaling motifs: an N-terminal

immunoreceptor tyrosine inhibitory motif (ITIM) and a

C-terminal immunoreceptor tyrosine-based switch motif

(ITSM). Of these, the ITSM serves as the primary mediator

of PD-1-mediated immunosuppression. Following PD-L1

engagement, ligand-induced ITSM phosphorylation

triggers downstream signaling cascades that mediate

immune inhibitory responses. The inhibitory mechanism of

the PD-1/PD-L1 axis is different in T lymphocytes and B

lymphocytes [10]. In T cells, upon PD-1/PD-L1 binding,

the ITSM-mediated recruitment of SHP-1/2 phosphatases

induces dephosphorylation of proximal T-cell receptor

(TCR) signaling components (ZAP70 and CD3δ). This

phosphatase-driven signal attenuation disrupts PI3K/AKT

axis activation, resulting in the inhibition of Bcl-xl, the

apoptosis-related factor, and cytokines by T lymphocytes.

The PD-1/PD-L1 axis also inhibits T cell proliferation by

blocking the Ras-ERK pathway [11]. In B cells, PD-1

inhibits activation and attenuates the immune response to

antigens [11]. PD-1 activation initiates sequential

phosphatase signaling through SHP-2 recruitment to its

cytoplasmic ITSM domain. This signalosome assembly

catalyzes the dephosphorylation of proximal BCR

signaling mediators (Igα/β, SγK), ultimately driving cell

apoptosis. Mechanistically, SγK inactivation propagates

through ERK/PI3K/PLCγ2 axis disruption, triggering

downstream calcium flux dysregulation and cell cycle

arrest [12].

As a important regulator of T lymphocyte homeostasis, the

PD-1/PD-L1 axis critically mediates immune tolerance

while paradoxically contributing to autoimmune

pathogenesis and chronic infection persistence.

PD-1/PD-L1 interactions are referred to as "immune

checkpoints" because its regulation of tumor

antigen-specific T cell responses. Functioning

synergistically cytotoxic T-lymphocyte-associated protein 4

(CTLA-4, CD152), they renforce T cell functional

exhaustion by attenuating TCR activation thresholds and

transcriptional repression of proinflammatory cytokines,

thereby establishing immunosuppressive

microenvironments conducive to tumor immune evasion.

The PD-1/PD-L1 pathway is involved in the regulation of

central and peripheral immune tolerance by providing

inhibitory signals through mechanisms such as blocking

proliferation, inducing apoptosis, regulating T-cell

differentiation, and immunosuppression. For example,

peripheral CD4 tolerance is regulated by PD-1/PD-L1

pathway in a variety of ways, particularly in terms of

lymphocyte stability and integrity. The dysregulated

expression of PD-L1 in tumor cells correlates with immune

evasion across various malignancies, highlighting the

critical role of PD-L1 structural variations in oncogenic

progression [13]. PD-L1 mediates apoptotic evasion in

malignancies through dual resistance modalities: (1)

Cell-intrinsic resistance programs driven by constitutive

PD-L1 overexpression via oncogenic drivers (e.g.,

STAT3/MYC activation), and (2) Adaptive immune

tolerance mechanisms facilitated by dynamic PD-L1

upregulation in response to IFN-γ/TNF-α signaling [14, 15].

Meanwhile, PD-L1 also expressed across myeloid

(macrophages, dendritic cells, MDSCs) and lymphoid

populations mediated by inflammatory cues, constituting a

hallmark of adaptive immune resistance [16]. Paradoxically,

It has been demonstrates context-dependent

immunomodulation, where its TME-wide expression

profile mechanistically links to enhanced tumor

immunogenicity and favorable clinical outcomes.

Based on the pair of immune co-inhibitory molecules,

inhibitors are often used to block the PD-1/PD-L1

signaling pathway and rescue the immune response.

Currently, there are six monoclonal antibodies and three
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monoclonal antibodies (Table 1). PD-1/PD-L1-targeting

ICIs restore effector T cell populations, enhance their

cytotoxic activity against chemotherapy-resistant tumors,

reverse chronic infection-induced CD8+ T cell exhaustion,

stimulate pro-inflammatory cytokine production, and

reestablish sustained antitumor immunity [17,18]. Meanwhile,

ICIs therapy has less toxic than standard chemotherapy,

with the common side effect of immune-related adverse

events (irAEs). irAEs are actually triggered by altered

immune tolerance of the body after immune checkpoints

have been blocked. Prolonged immune activation may

induce autoimmune-like inflammatory adverse events

through off-target tissue damage, with delayed autoimmune

toxicity persisting post-treatment cessation. Given the

expanding clinical use of anti-PD-1 antibodies, extended

surveillance of ICI recipients remains imperative to

monitor these chronic immunotoxicities.

Table 1. Approved PD-1/PD-L1 monoclonal antibody
Name Target Approval Date Property Indication

Nivolumab85 PD-1 December 2014(FDA) IgG4, fully human
Non-small-cell lung cancer, Hodgkin' s
lymphoma, colorectal cancer, etc.

Pembrolizumab86 PD-1 September 2014(FDA)
IgG4, humanized

antibody
Advanced melanoma, breast cancer, bladder

cancer, etc.

Cemiplimab87 PD-1 September 2018(FDA)
IgG4, humanized

antibody
Metastatic cutaneous squamous-cell

carcinoma

Toripalimab88 PD-1
December

2018(NMPA)
IgG4, humanized

antibody
Advanced Chinese melanoma patients who

had failed in systemic treatments

Sintilimab89 PD-1
December

2018(NMPA)
IgG4, fully human

Patients with relapsed or refractory classical
Hodgkin lymphoma

Camrelizumab90 PD-1 May 2019(NMPA)
IgG4, humanized

antibody
Patients with relapsed or refractory classical

Hodgkin lymphoma

Atezolizumab91 PD-L1 May 2016(FDA)
IgG1, humanized

antibody

Metastatic non-small cell lung cancer
progressing after platinum-based
chemotherapy, locally advanced or

metastatic urothelial cancer that cannot be
treated with chemotherapy and

PD-L1-positive triple negative breast cancer

Avelumab92 PD-L1 March 2017(FDA) IgG1, fully human
Metastatic merkel cell carcinoma, advanced

renal cell carcinoma, and urothelial
carcinoma, etc.

Durvalumab93 PD-L1 May 2017(FDA) IgG1, fully human
Locally advanced or metastatic urothelial
cancer and unresectable stage Ⅲ non-small

cell lung cancer

Important signaling pathways regulating PD-L1

High expression of PD-L1 is associated with poor

prognosis in a variety of human cancers, including renal

cell, breast, colorectal, gastric, non-small cell lung,

papillary thyroid, and testicular cancers [19]. While the

PD-1/PD-L1 axis can be regulated by a variety of signals.

The review of the relevant pathways will provide ideas and

therapeutic targets for antitumor immunotherapy (Figure

1).
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Figure 1. Schematic diagram of PD-L1 expression and
its regulation.

PI3K/PTEN/Akt/mTOR pathway

The phosphatidylinositol 3-kinase (PI3K)/protein kinase B

(AKT) pathway is associated with cell proliferation and

regulates a variety of processes related to cell proliferation

and apoptosis, as well as influencing immune surveillance

through the regulation of PD-L1 [20]. Mutations in

PIK3CA (catalytic subunit of PI3K, alpha) or its negative

regulator phosphatase and tensin homolog deleted on

chromosome ten (PTEN) activate its regulation of immune

responses, and the elevation of PD-L1 in glioblastomas is

also mediated by PTEN deletion, which suggests the

involvement of the PI3K pathway. Thereby, Tong et al. [20]

showed that metastasis-associated colon cancer protein 1

(MACC1), cellular-mesenchymal epithelial converting

factor (METF), and PD-L1 were also elevated in

gastrocytomas, suggesting that the PI3K pathway is

involved and thus contributes to the survival of the cancer

cells. Mesenchymal epithelial transition factor (c-Met) and

PD-L1 were significantly up-regulated in colon cancer

tissues, and MACC1 regulated the expression of PD-L1

and tumor immunity through the c-Met/AKT/mTOR

pathway. Inhibition of c-Met phosphorylation and its

downstream cascade reactions, such as Akt

phosphorylation and mammalian target of rapamycin

(mTOR) phosphorylation, may provide new strategies for

the treatment of various cancers. Inhibition of PI3K-related

pathways can lead to downregulation of PD-L1 expression

in different types of cancers, e.g., in renal cell carcinoma,

inhibition of the HGF/c-Met pathway, the upstream of

PI3K, can ultimately mediate the downregulation of PD-L1

expression [21]. Up-regulation of PD-L1 protein levels in

tumor specimens from patients with glioblastoma

multiforme is correlated with PTEN loss [22]. These

regulatory mechanisms add new potential targets for

immunotherapy.

Table 2. Promotional role of different pathways in immunotherapy of different tumors

Signaling Pathways Therapeutic drugs Type of Cancer References
EGFR/GSK3β Osimertinib Non-small cell lung cancer 94

mTORC2/Akt/GSK3β MTI-31 Non-small cell lung cancer 95

ATR VE822 Breast cancer 96

PKCα/GSK3β/MITF SA-49 Non-small cell lung cancer 97

NF-κB/CSN5 Curcumin
Triple-negative breast cancer,
Colorectal cancer, Melanoma

98

AMPK Metformin
Breast cancer,
Lung cancer

99

EMT/β-catenin/STT3 Etoposide
Triple-negative breast cancer,

Colorectal cancer
100

CMTM6 H1A Breast cancer, Colorectal cancer 101

HIP1R PD-LYSO Colorectal cancer 102
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RAS/RAF/MEK/MAPK-ERK pathway

The mitogen-activated protein kinase (MAPK) pathway

serves as an important signaling hub that transduces

extracellular stimuli into intracellular responses,

orchestrating critical cellular processes including

proliferation, differentiation, invasion, metastasis, and

apoptosis. This phosphorylation-dependent activation

system operates through three parallel cascades: c-Jun

N-terminal kinase (JNK), p38MAPK, and extracellular

signal-regulated kinase (ERK).Evidences have shown that

PD-L1 can be regulated by ERK-MAPK pathway in

different cancer. In human bronchial epithelial cell

carcinogenesis, oncogene KRAS-driven PD-L1 expression

is dependent on ERK, and KRAS mutation induces a

significant increase in PD-L1 expression, while inhibition

of ERK activation significantly reduces the increase in

PD-L1 expression in KRAS-mutant cells [23]. Murine

sarcoma viral oncogene homolog B1 (BRAF) inhibitor

resistance resulted in increased PD-L1 expression in

melanoma cells, which is mediated by c-Jun and signal

transducer and activator of transcription 3 (STAT3).

Meanwhile, the effect of STAT3 can be effectively reversed

by mitogen-activated protein kinase (MEK) and the PI3K

inhibitor and reduces PD-L1 expression [24,25]. In addition,

activation of the RAS/MAPK pathway promotes

triple-negative breast cancer immune evasion, and MEK

inhibition upregulates MHC and PD-L1 expression on the

cell surface, supporting clinical trials of MEK and PD-L1

combination targeting therapy [26]. Thus, combining these

pathway factors is instructive both for understanding the

mechanisms of tumor growth and for promoting precision

immunotherapy.

EGFR pathway

The epidermal growth factor receptor (EGFR) is a

transmembrane tyrosine kinase receptor and a member of

the ErbB receptor family. Studies have shown aberrant

expression of EGFR in many solid tumors [27]. The

proliferation, angiogenesis, invasion, metastasis, and

apoptosis of tumor cell are associated with EGFR. EGFR is

usually mutated in non-small-cell lung cancer (NSCLC)

[21]. High expression of PD-L1 is associated with EGFR

mutations in NSCLC and is an independent negative

prognostic factor for this disease [28]. PD-1 antibody

blockade improves the survival of patients with

EGFR-driven advanced NSCLC by enhancing effector

T-cell function and decreasing the level of pro-tumor

cytokines [29]. In another set of studies, Wang et al. [30]

reported that EGFR activation induced Snail-dependent

epithelial mesenchymal transition (EMT) and

myc-dependent PD-L1 expression in human salivary

adenoid cystic carcinoma.

In conclusion, the expression of PD-L1 in cancer cells is

regulated by a variety of signaling pathways, including,

PI3K/AKT, MAPK, and EGFR, etc., and the PD-L1

protein is degraded in the proteasome or lysosome through

a variety of pathways, which improves the efficacy of

cancer immunotherapy, and the advantages and

disadvantages of different pathways for immunotherapy are

summarized in Table 2.

Transcription factors regulate PD-L1 expression

Several transcription factors have been shown to regulate

PD-L1 expression, including STAT, NF-κB, IRF1, and

HIF-α. STAT3 drives tumor progression by dual

mechanisms: (1) orchestrating cancer cell

survival/proliferation while fostering immunosuppressive

oncogenic niches in the tumor microenvironment, and (2)

directly modulating PD-L1 expression across malignancies
[28,31]. Xiao et al. [32] demonstrated that JAK-STAT pathway

inhibition downregulates PD-L1 expression in bone

marrow mesenchymal stem cells (MSCs), with IFNAR1

levels governing this immune checkpoint regulation in

vitro. In addition, exogenous cellular stress, such as DNA

double-strand breaks, can also lead to upregulation of

PD-L1 in tumors, dependent on DNA double-strand

break-activated STAT1 and STAT3 signaling[33]. NF-κB, a

major transcription factor that promotes inflammatory

responses and inhibits apoptosis, is activated in a variety of

cancers and impairs effective anti-tumor immunity[34]. In

the NF-κB family, p65 RelA/p50 is the most representative
[35]. It has been shown that PD-L1 can be induced
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constitutively by lymphocyte-driven IFN-γ, whereas

IFN-γ-induced expression of PD-L1 is dependent on

NF-κB. Meanwhile, the PI3K/AKT, STAT3 and c-Jun play

a secondary role in IFN-γ-induced PD-L1 expression [36].

Therefore, transcription factor regulatory mechanisms play

an important role in anti-PD1/PD-L1 therapy, and an

in-depth study of their regulatory mechanisms is of great

significance for tending to improve the effects of

immunotherapy (Figure 1).

Non-coding RNAs regulate PD-L1 expression

Non-coding RNAs (ncRNAs) are not involved in protein

coding, including microRNA (miRNA) and long

non-coding RNA (lncRNA), etc., and have important roles

in regulating gene expression as well as cell proliferation

and apoptosis. MiRNAs can bind to the 3′-UTRs of

mRNAs and the coding sequences to regulate gene

expression and promote cleavage of mRNA transcripts,

leading to their degradation or translational repression.

Recent studies have shown that the certain miRNAs that

increase PD-L1 expression in tumor cells is one of the

major mechanisms of immune escape [37]. Pyzer et al. [38]

demonstrated that MUC1 silencing downregulates PD-L1

protein expression in acute myeloid leukemia (AML) cells

without altering mRNA levels, through miR-200c/miR-34a

upregulation mediating post-transcriptional PD-L1 control.

Circ-CPA4 orchestrates dual oncogenic effects in NSCLC

by promoting tumor progression (growth, migration,

stemness) and chemoresistance while suppressing CD8+ T

cell activity within TME, mediated through the let-7

miRNA/PD-L1 axis [39]. Dong et al. [40] reported that

miRNA-18a are key upstream regulators of PD-L1 and

potential targets for cervical cancer therapy. In conclusion,

several miRNAs have been identified to regulate PD-L1

expression by directly or indirectly manners. Direct

regulation mainly affects the expression of PD-L1 mRNA

by binding to it. The miRNAs that directly regulate PD-L1

expression include miRNA-513 [41], miRNA-34 [42],

miRNA-570 [43], miRNA-152 [44], miRNA-200 [45],

miRNA-138, miRNA-142-5p, miRNA-424, miRNA-193a,

miRNA-133a and miRNA-140/142/340/383 [46]. Indirect

regulators mainly refer to miRNAs that indirectly mediate

PD-L1 expression by affecting regulatory factors including

miR-20b, miR-21, miR-130b and miR-197 [46]. (Figure 1)

Regulation of PD-L1 post-translational modifications

Protein post-translational modifications (PTMs), such as

ubiquitination, glycosylation, and phosphorylation, play

important roles in the regulation of protein stability,

translocation, and protein interactions [19]. PTMs of PD-L1

have become an important regulatory mechanism for tumor

immunosuppression, and aberrant changes in PTMs

directly affect PD-L1-mediated immune resistance [19].

Protein ubiquitination modifications can mediate substrate

protein degradation through the proteasomal degradation

pathway, and a variety of ubiquitin ligases (E3s) mediate

the degradation of PD-L1, including β-TrCP [47], Cullin

3-SPOP [48], FBXO38 [49], Cbl-b and c-Cb1 [50], etc.,

whereas deubiquitinating enzymes such as CSN5 [51],

USP15 [52], and USP22 [53] could stabilize the expression of

PD-L1 protein from proteasomal degradation by

deubiquitinating modifications of PD-L1. In addition,

glycosylation modification of PD-L1 can also stabilize its

protein expression, mainly N-linked glycosylation

modification (N-GlcNAc). The half-life of fully

glycosylated PD-L1 is approximately 12 h, whereas the

half-life of non-glycosylated PD-L1 is only 4 h [19]. The

immunosuppressive activity of PD-L1 is tightly regulated

by ubiquitination and N-glycosylation. The study of Li et al
[54]. revealed that the interaction of GSK3β with PD-L1

induced the degradation of β-TrCP via the proteasome

pathway PD-L1, while glycosylation antagonizes GSK3β

binding, linking the ubiquitination and glycosylation

pathways to the tight regulation of PD-L1. Phosphorylation

modifications, on the other hand, are involved in the

regulation of PD-L1 stability mainly by modulating the

above two modifications (Figure 1).

Tregs and Tumor Immune Evasion Tolerance

The discovery of Tregs by Gershon and Kondo in 1970 [55]

laid the foundation for modern immuno-regulation studies.

Sakaguchi's seminal identification of CD4+CD25+ Tregs
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[56] established these cells as pivotal immunoregulatory

players, driving sustained research focus over the past two

decades. CD4+CD25+ Tregs cells are specifically

characterized by fork-head winged-helix transcription

factor (fork-headbox P3, Foxp3). Tregs are ontogenically

classified into two subsets: thymus-derived natural Tregs

(nTregs) exhibiting homeostatic quiescence, and

peripherally induced Tregs (iTregs) [57]. nTregs require

stimulus antigens for their expansion, and their inhibitory

activity does not require TCR involvement. In contrast,

originate from conventional CD4+ T cells (Tconv) both in

vivo and in vitro, requiring coordinated signals from

antigenic TCR engagement, costimulatory molecules, and

cytokines (e.g., TGF-β1, IL-2) to drive their differentiation
[58,59]. Tregs maintain immune equilibrium by suppressing

effector T cell hyperactivation and preventing

immunopathological damage, thereby serving as pivotal

guardians of immune homeostasis and self-tolerance

(Figure 2).

Figure 2. Schematic diagram of the Tregs production
and immunosuppression.

The mechanism of Tregs immunosuppression has not been

fully elucidated, and it is generally believed that

CD4+CD25+Foxp3+Tregs downregulate the immune

response through multiple pathways. These include cell

contact-dependent inhibition, functional alterations, and

immunosuppressive cytokine secretion, etc. Sakaguchi et al.
[60] proposed that Treg-mediated suppression may either

involve a core suppression mechanism complemented by

auxiliary pathways, or alternatively, multiple mechanisms

functioning in a coordinated manner. (Figure 2).

Treg-mediated immunosuppression contributes to tumor

progression through inhibition of antitumor immune

responses. Furthermore, elevated Treg infiltration has been

consistently observed in tumor tissues compared to

adjacent non-tumor tissues [61,62]. As for their origination,

Tregs in TME may be enriched by both peri-tumor and

local Treg expansion [63]. Tumor-derived soluble mediators,

including vascular endothelial growth factor (VEGF) and

chemokines (CCL17/CCL22/CCL28/CXCL12), directly

induce Treg expansion through paracrine signaling,

attracting Tregs to the tumor bed [63]. Tumor-infiltrating

Tregs are selectively depleted through an Fc-dependent

mechanism, resulting in an increase in CD8+Teffs/Tregs at

the tumor site and in peripheral blood65.Tumor-infiltrating

CD4+ tissue-resident memory T cells (CD4+Th-TIL)

demonstrate canonical tissue-resident memory

characteristics [64], while Fcγ receptor-mediated Treg

depletion enhances intratumoral CD8+ effector-to-Treg

ratios yet elevates peripheral blood Treg populations

through compensatory mechanisms [65]. Treg depletion in

murine melanoma and colon carcinoma models augments

tumor-specific T cell responses, suppresses tumor

progression, and potentiates immunotherapy efficacy [66].

Conversely, elevated Treg infiltration correlates with

adverse clinical outcomes, establishing Treg-mediated

immunosuppression as a critical tumor immune evasion

mechanism [67].

Role of Th17 cells in tumor immunity

Th17 cells, defined by their signature IL-17 production (the

eponymous effector cytokine), undergo differentiation

orchestrated by transcription factor retinoic acid

receptor-related orphan receptor gamma-t (RORγt) and

STAT3 activation, requiring specific cytokines [68]. A large

number of studies have shown that IL-17 plays an

important role in promoting tumor growth and invasion [69].

TME stromal components generate various chemokines

that recruit Th17 cells through cytokine crosstalk [70].

While Th17 cells facilitate stromal infiltration of myeloid
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populations (Macrophages/DCs) and lymphoid subsets

(NK/memory T cells) by CCL2/CCL20, but these cells do

not necessarily exert direct antitumor effects [71].

Meanwhile, Th17-derived chemokines drive coordinated

CD8+ cytotoxic T lymphocyte recruitment and clonal

expansion via paracrine activation circuits [71].

As shown above, Th17 cells promote both antitumor

immunity and tumorigenesis [72, 73]. In terms of

pro-tumorigenic activity, IL-17A exhibits dual oncogenic

activity, driving tumor cell proliferation via

autocrine/paracrine loops (produced by both Th17 cells and

cancer cells) [72]. Mechanistically, it induces

VEGF-mediated neovascularization and stimulates

MMP-9-dependent metastatic cascades through

tumor-stromal crosstalk [72, 73]. Conversely, emerging

evidence indicates Th17 cells enhance antitumor immunity

and patient survival. In B16 melanoma murine models,

adoptive transfer of tumor-specific Th17 cells

demonstrated potent CD8+ T cell activation, critical for

antitumor efficacy, mediated through IL-17-driven

inflammatory cascades [70]. Th17 polarization in pancreatic

cancer murine models significantly attenuates tumor

progression and extends survival [74]. While substantial

evidence demonstrates Th17-driven facilitation of

oncogenesis through invasion and neovascularization,

emerging data confirm its paradoxical duality in

coordinating antitumor immunity, a critical determinant of

clinical survival outcomes across experimental and human

studies. Cantini et al. reported a biphasic effect of Th17

cells using a mouse glioma model [75]. In summary, the

Th17 response may be diverse, and it may play different

roles for different targets. At present, the research data on

the mechanism of Th17 cell production and regulation in

tumors are still limited, and the experimental results are

inevitably contradictory and need to be further

investigated.

Association between PD-1/PD-L1 pathway, Tregs and

Th17 cells in tumor immunity

PD-1/PD-L1 blockers can play a therapeutic role in

targeting immune changes induced by the tumor

Figure 3. Schematic representation of the association
between the PD-1/PD-L1 pathway, Tregs and Th17 cells
in the tumor immune microenvironment.

microenvironment and help to restore tumor immunity

(Figure 3). PD-1/PD-L1 blockade potentiates

tumor-specific T cell cytotoxicity while suppressing

IL-10-mediated immunosuppression, thereby amplifying

pro-inflammatory cytokine networks and Teffs dominance

over Tregs within tumors [76]. Notably, Tregs co-express

PD-1/PD-L1, forming a self-reinforcing tolerance circuit

through bidirectional checkpoint signaling [76]. PD-L1 can

drives CD4+ T cell conversion to Tregs via PTEN

upregulation and AKT/ERK2/mTOR axis inhibition.

Interactions between PD-L1-expressing DCs and T

lymphocytes can also promote Tregs development [77].

Tumor-associated macrophages (TAMs) promote the

conversion of Tconv to Tregs, contributing to the

accumulation of Tregs in tumors, and enhancing the

expression of PD-1 on CD4+ T cells [78]. The lack of

PD-L1 in APCs led to a decrease in the production of Tregs

in CD4+ T lymphocytes. Francisco et al. [77] demonstrated

that PD-L1 induces iTregs cell differentiation, maintenance,

and functional activity through sustaining and upregulating

Foxp3 expression in these regulatory T cells. Furthermore,

stimulation of T lymphocytes with PD-L1-Ig significantly

enhanced both Foxp3 expression levels and the

immunosuppressive capacity of Treg populations [77]. This

suggests that the PD-1/PD-L1 axis plays a key role in

regulating the development and function of Tregs and that

the PD-1 signaling pathway is also important for
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maintaining Tregs suppression. Detection of peripheral

blood Tregs/CD4+ T cells can be used to predict tumor

immunotherapy efficacy and survival benefit [79-81].

Both Tregs and Th17 cells exhibit phenotypic plasticity.

Notably, Th17 cells activated under specific conditions can

downregulate IL-17 production while upregulating IFN-γ

secretion in response to inflammatory cues, thereby

acquiring Th1-like characteristics. These transitional cells,

termed ex-Th17 cells, may contribute to autoimmune

exacerbation and antitumor immune modulation through

this functional reprogramming [82]. Notably, Treg

populations demonstrate selective immunosuppressive

capacity, effectively suppressing classical Th1 and Th17

cell proliferation while sparing ex-Th17 cell subsets [83].

Under cytokine stimulation, Tregs can undergo phenotypic

reprogramming to reacquire Th17-like effector functions.

Conversely, the reciprocal acquisition of Treg-like

regulatory properties by Th17 cells remains poorly

characterized. This reciprocal plasticity highlights novel

therapeutic targets for modulating Th17-Treg dynamics in

cancer immunotherapy. Emerging evidence indicates IL-17

signaling and Th17-derived cytokines critically influence

both therapeutic outcomes and immune-related adverse

events during checkpoint blockade therapy in oncology

patients [84].

Meanwhile, irAEs frequently manifest alongside antitumor

immunity, potentially mediated by IL-17-driven

inflammatory pathways. Critical knowledge gaps persist

regarding Th17 cell contributions to ICIs

pharmacodynamics, particularly their dual roles in

therapeutic efficacy. Current evidence suggests that

achieving immune homeostasis represents a central

challenge in immunotherapy. Therapeutic targeting of the

Th17/Treg axis shows promise for simultaneously

amplifying tumor-specific immunity while mitigating

off-tissue damage through precision modulation of this

cytokine-regulated equilibrium [84].

CONCLUSION

Among the many strategies for tumor therapy, the

emergence of PD-1/PD-L ICIs has further clarified the

importance of the PD-1 pathway in regulating the

peripheral immune tolerance of the body. It is important to

note that despite the clinical success of applying

monoclonal antibodies to block PD-L1/PD-1-mediated

immunosuppression in many tumors, blocking the

PD-L1/PD-1 pathway is not sufficient to restore anti-tumor

immunity in many cases due to a variety of factors, such as

the presence of other immune checkpoints, that also

promote tumor immune escape, and, as a result, a better

understanding of PD-L1 regulation and its mechanisms

will provide a basis for targeted therapy combined with

immune checkpoint inhibitors, and provide a more

effective and precise means to address tumor immune

escape. Meanwhile, successful blockade of the PD-1

pathway is the key point of this immunotherapy, and the

achievement of this blockade may be related to the

enhancement of T cell immunity after releasing T cell

inhibition, or it may be caused by interfering with the

production or function of Tregs cells, and the specific

mechanism is not clear. There is a complex correlation

between the PD-1/PD-L1 pathway and the Tregs in the

progression of the tumors and in the treatment, and the

ratio and phenotype of Tregs have the potential to be

biomarkers for predicting the therapeutic response of

PD-1/PD-L1 antagonists. In addition, the Th17/Treg

equilibrium plays a crucial role in preserving systemic

immune homeostasis, suggesting that interventions

targeting this axis could substantially influence clinical

outcomes in oncology. While Th17 cells and associated

cytokines exhibit dual roles in both tumor promotion and

suppression, their precise mechanisms remain elusive.

Furthermore, the temporal dynamics of Th17-mediated

tumor immunity across distinct stages of carcinogenesis

require systematic investigation. The functional duality of

Th17 cells in tumor immunity warrants continued

investigation across distinct phases of tumor progression.

Advancements in immunotherapy research hold promise

for elucidating Th17-mediated mechanisms, potentially

refining immune-mediated cancer control strategies.
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